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The effects of a magnetic field in an integrable Heisenberg 
chain with mixed spins 
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Brazil 

Received 23 July 1993 

Abshact. We discuss some properties of an integrable and conformally invariant Heisenberg 
chain with aite.mahg spins S and S' (S' > S) in the presence of a magnetic field. The zero- 
field magnetic susceptibility is computed and rums out to be only dependent on the spin St. 
For small enough magnetic field, the low-lying excitations are related tn the deformed SU(2) 
parafemionic field theory at levels 2s and 2(S' - S). Generalizations tn these resulh for other 
mixed systems a~ commented on. 

1. Introduction 

The integrable quantum spin chain has been known as a possible prototype for experimental 
realizations of conformal field theories [l]. For instance, the underlying conformal field 
theory of the integrable and isotropic spin4 Heisenberg (XXX-S) model /2,3] is the 
SU(2)  Wess-Zumino-Witten-Novikov ( W m )  nonlinear U-model with topological charge 
k = 2s [4,5]. Recently some progress has been made on the construction of integrable and 
conformally invariant magnetic chains combining different kinds of spins 161. A particularly 
simple example is an alternating chain composed of spins S and S' acting on odd and even 
sites of the chain of size L,  respectively [&SI. It has been argued in [SI, for a conformally 
invariant version of this alternating mixed system, that its associated conformal anomaly 
can be decomposed in terms of two SU(2)  wzwN models with topological charge k = 2s 
and k = 2(S' - S) (S' z S). 

The main purpose of this paper is to study the properties of this mixed spin chain in the 
presence of a magnetic field. There are two basic motivations for such an analysis. First, as 
shown by Affleck [9], besides the specific heat, the zero-temperature magnetic susceptibility 
plays an important role in determining the class of universality of conformally invariant 
chains. We find that the zero-field susceptibility is a universal number, when scaled by the 
sound velocity, proportional to the 'higher' spin S'. Hence, unlike Affleck's discussion [9] 
for the m - S  model, this universal number alone will not be a sufficient 'experimental' 
test in order to determine the spins S and S' of the mixed S-S' chain. 

The second purpose is to study the magnetic field as an integrable off-critical perturbation 
ofthis mixed system. It turns out that such an analysis will shed some light on the previously 
mentioned [SI decomposition in terms of two SU(2) w" models. By using an approach 
due to Tsvelick [IO] we show that a sufliciently small magnetic field breaks the spectrum into 
two massless coupled bosonic fields and two massive SU(2) parafermionic field theories at 
levels k = 2s and k = 2(S' - S).  This leads us to conclude that the operator content can 
be described as a certain combination of bosonic and parafermionic fields. 

03054470/93/241301+9$07.50 @ 1993 IOP Publishing Ltd 7301 
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This paper is organized as follows. In the next section we review the basic Bethe ansatz 
properties of this mixed S-S'chain and we compute the zero-field magnetic susceptibility. In 
section 3 we analyse the excitations appearing in the thermodynamic Bethe ansatz equation 
in presence of a magnetic field. Section 4 is devoted to the discussion of OUT results and 
further generalizations. 

2. The mixed S-S' chain and its magnetic sosceptibility 

We start by briefly reviewing the basic Bethe ansatz results of an integrable and isotropic 
Heisenberg chain consisting of alternating spins S and S' [6-8,111. Here the main purpose 
is only to consider the properties of conformally invariant mixed S-S' spin chaint. Let 
us consider such a system consisting of L / 2  spins S (S') acting on odd (even) sites 
of the chain in presence of an external magnetic field H (H > 0). The spectrum of 
this model is labelled [6-8,111 by r disjoint sectors of the eigenvalues of the total spin 
operator = E:,,,,,, Si + Si, where M = L/2(S + S') - r .  The eigenenergies are 
parametrized in terms of the rapidities Aj by 

where the parameters A j  satisfy the following Bethe ansatz equation 

(2) 
A ~ - A [ - ~  (m) (h) = - m A . - A l + i '  1 4  J 

Aj-is ' f l  ?..-ist L/' 

We shall consider the thermodynamic equations associated with the system of 
equations (1) and (2). In the thermodynamic limit, L -+ CO, equations (1) and (2) 
can be written in terms of the densities of particles un(A) and holes &(A) for a given 
dishibution of Aj of n-string type [12]. Following the standard procedure [12,3] the free 
energy F(T, H) at temperature T can be expressed in terms of the 'excitation' energies 
&(A) = TIn(&(A)/un(A)), n = 1.2,. . ., by 

m 
F(T,  H ) / L  = e, - 2 / dAp(A)[ln(l + efu(')lr) + In(1 + ef2S'(*)/')] (3 ) 

where e, = -4 [+(S + 4) + +(Sf+ 9 1  - +(; + S/2+ S' /2)  + +((S' - S + 1)/2) + +(1/2), 
+ ( x )  being the Euler psi function and p(A) = x/cosh(nA). The functions €#(A) satisfy the 
so-called thermodynamic Bethe ansatz equation 

Tln(1 + (4) 

where [f * gJ(x) denotes the convolution ( l / Z i r ) ~ _ " f ( x  - y)g(y)dy. The functions 
A,&) and $&) can be easily represented in terms of their Fourier transform A,,j(m) 

4n -m 

m 

= -t&,s(A) - $bn,&) + nH + T C[A,.j * ln(1 + e-fJ'r)l(A) 
]=I 

and @ n , j ( m )  

A,,&) = coth([wl/2)[e-l"-ill"1/2 - e-(n+j)14fl] (5) 

+n,j/z(@) = An,j(@)p(m) (6) 

t For a general discussion on nomroratlonrrl mixed vertex models leading to mixed spin systems see 16.71. 
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where p ( o )  = 1/2cosh(o/2) and the Fourier transform of f(A)  is f(o) = 
(1/2n) I-", dr e-iax f ( x ) .  

From now on we concentrate on the T = 0 behaviour of equations (3) and (4) for a 
small field H (H > 0). The first step is to notice that functions €"(A) are always positive 
for n # 2s and 2s'. The change of sign only occurs for E&) and EZS,(A) at some 
point A = &b1 and A = zkbz, respectively. Defining E & ~ , , ( A ) ( E & ~ , , ( A ) )  as the positive 
(negative) part of function EZS(ZS,)(A),  and taking the T + 0 limit of equation (4) we obtain 
a new system of equations for n # 2s and 2s' 

d A )  = - $ n , ~ ( A )  - @n,~4V + nH - [A,,zs * t&I(A) - [An,zs, * E&,I(A) (7) 

and the following matrices system for n = 2S, 2s' 

where Z is a 2 x 2 identity matrix and K ( A )  is the following matrix 

Finally, solving equation (8) in terms of functions EZ&) and ez~,(A) we have 

where J ( A )  is the matrix J ( A )  = -K * [ I  + K]-'(A). 

field H. At this point it is convenient to define the functions yl(A) = 
yz(A) = E ~ s , ( A  + bz). In terms of these new functions equation (IO) can be rewritten as 

The next step is to solve equation (10) up to the first non-zero order in the magnetic 
+ bl) and 

where fi(A) = p(A + bi), UI = 0, U* = 1/2 and orij = bi - bj .  
Considering a small magnetic field (H << 1) one can show, up to order of e-** (see, 

e.g., [31), that the last term of equation (11) can be neglected and the resultant expression 
can be cast in form of a system of Wiener-Hopf equations [14]. Defining the functions 

and by using the standard techniques for solving Wiener-Hopf [ 141 equations we find (up 
to order of e-") 
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where functions G+(o)ij(G-(o)ij) are analytic on the upper (lower) half complex plane 
factorizing the kernel Si,, + Ji,j(o)em6f" as 

[G+(o)G-(w)],j' = Sf,, + Ji,j(o)eiu@. (14) 

The constants e-"*f are related to the magnetic field through the relation yi(h = 0). and 
using equations (12) and (13) we have 

Taking the T + 0 l i t  in equation (3) we find that the following expression for the 
free energy ( H  <( 1 )  

and finally using the relations (13) and (15) we obtain the result 

F(0 ,  H ) J L  =e, - S'H2J4n2. (17) 

From thii equation we conclude that the zero-field magnetic susceptibility x = 
-aZFJa2H satisfies 

xu, = S 'Jn  (18) 

where vs = 2x is the sound velocity of the mixed S-S' spin chain [a, 81. Setting S' = 1 
in equation (17) we recover the result previously obtained in [7]t for the spins 4-1 mixed 
system. When S' = S (homogeneous system), equation (18) reproduces the early results of 
L3.91. 

As a consequence of equation (18) the universal number x y  depends only on the 
'higher' spin variable S. On the other hand, however, this result would be expected if 
one considered the decomposition mentioned in the introduction and previous conclusions 
reached by Affleck [9] in the case of the I W I - S  chain. Indeed taking into account that 
thii mixed system may be decomposed in terms of two WzwN models with k = 2s and 
k = 2(S' - S )  and that xu,  = k/2x for the xxX-k/Z chain will lead us to conjecture 
equations (17) and (18) up to order H Z  of the magnetic field (considering that v, = 2n for 
the mixed S - S' system [6,8].) .  

3. The parmfermionic and bosonic sectors of the mixed S-S' system 

In this section we are going to study the excitation modes appearing in the system of 
equation (4) for small magnetic field H << 1. We shall adopt the approach used by Tsvelick 

t In this reference the amazing magnetic proprties of the non-rotational invariant mixed spin &I model has also 
been discussed. 
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[lo] in his study of the effects of a magnetic field in the XXX-S chain. We begin by 
inverting equation (8) in terms of functions e&(2s) 

Substituting this equation back into equation (7) it follows that 

E ~ ( A ) = [ B ~ , ~ ~ - ~ * ~ * ~ ~ ] ( A )  n = l . 2  ,..., 2 s - 1  (20) 

cn+zs(h) = [ B ~ ~ s * p * 6 ~ ] ( A ) + [ B ~ ~ ~ - s ~ - l * p * 6 ~ , l ( A )  n =  1.2, ..., Z(S'-S)-l 

(21) 

(22) 

where the Fourier transform of the matrix elements of B:j(w) satisfies the following 
property 

Cn+2s,(A) = nH + [An,i * p * 6 & ] ( A )  n = 1.2, . . . 

[BNl;,) = &,j  - p ( ~ ) ( & , ~ + l  + &,j-1) i ,  j = 1,2, . . . ,2N - 1. (23) 

As has been mentioned in section 2 the functions €"(A) 2 0 for n # 2S.7.S' (see 
equation (20)). The modes n = 2S,2St can be considered as the ground state of this 
system provided that the magnetic field is small enough in order to avoid crossings (for 
all A )  between these modes and those of n # U, 2s'. In order to classify the 'positive' 
modes (n # 2S,  2s') it is important to estimate the 'mass gap' ~"(0) around the origin 
in terms of the magnetic field. From equation (22) it is straightforward to conclude that 
cn+~s,(0) - nH, n = 1.2, . . .. On the other hand, for IAl < min(b1, bz), it follows from 
equations (20) and (21) and by some manipulations of functions B l j ( A )  that 

<"(A) = -m1(S)sin[nn/2S]cosh(An/S) 
1 
S 

n = 1,2, .. . , 2 S  - 1 

[ m l ( S ' -  S) +mz(S'- S)]sin[nn/Z(S'- S)]cosh(An/(S'- S))  
1 

%ZS(A) = 

n = 1,2,. . . ,2(S'- S) - 1 tw 
where 

From equations (10). (15) and (19) we notice that e-ab, - H and that h ~ ( h  + 00) - 
EZS@ + 00) - H. Substituting these relations in equations (24) and (25) one is able to 
estimate the following 'mass gaps' 

~ ~ ( 0 )  - sin(nn/2S)H1+11S n = 1.2, . . . , 2 ~  - I (26) 

(27) cn+2s - sin(zn/Z(S' - s))H'+'~('-') n = 1,2, .  . . , Z(S' - S) - 1. 
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Considering that we have assumed H < 1 and from the power of H of equations (26) 
and (27) we conclude that the modes E,+w(A), n = 1.2, . . ., become the heaviest massive 
excitation of the system. Hence, the low-lying massive excitation corresponds to the lightest 
mass gaps €"(A), n = 1,2,. . . , 2 S  - 1,2S + 1, .. . ,2S' - 1. These are, indeed, the non- 
trivial modes appearing if one considers the magnetic field as an off-critical perturbation 
of the conformal point, From the standard results of perturbation theory one expects that 
the mass gaps scale as where A+ is the conformal dimension of the perturbating 
field. Comparing this last relation with equations (26) and (27) we notice that the low-lying 
massive specbrum can be generated by the direct sum of two operators with conformal 
dimension A+, = 1/(1 + S) and A h  = 1/(1+ S' - S). It turns out that such conformal 
dimension are those associated to the thermal operator of a Z(2S) and Z(2(S' - S)) 
parafermionic theory [15], respectively. This suggests that the low-lying massive excitations 
are, in some sense, related to the deformed parafermionic field theory by its 'first' energy 
operator. In order to investigate this fact, let us rewrite the thermodynamic Bethe ansatz 
equations in terms of the densities of particles (u&) and holes (&(A)). Taking into account 
equations (2) and (4), densities un(A) and &(.I) are constrained by the relation 

(28) P W  
u n ( A )  + &,(A) P * [&+I +zn-~(A)l(A) + =(&OS +&,zs). 

Since we are interested in the low-lying modes we just have to solve this equation for 
n = 1,2,. . . ,2S  - 1.2s + 1,. . . ,2S' - 1 in terms of densities &(A) and &&). The 
final result is written as 

n = 1.2. .. . ,2(S'-s) - 1. (30) 

Considering the similar analysis made for the functions €"(A), one notices that the 
asymptotic limit (H << 1) of the right-hand side of equations (29) and (30) is practically 
parallel with those performed in equations (20) and (21). Indeed, raking into account the 
approximations made in equations (24) and (25), we can show that such equations become 

&,(A) + x r B l , j  * uj](A) = ml(S)  sin(m/2S) cosh(rrA/S) 
2s-1 

n = 1,2, . . . ,2S - 1 
j = I  

(31) 

= [ml(S' - S) + mz(S' - S)l sin(xn/2(S' - S)) cosh(nA/(S' - S)) 
n = 1,2 )..., 2(S'-S)- 1. (32) 

As has been argued by Tsvelick [lo], equations (31) and (32) define the thermodynamic 
Bethe ansatz equation of the Z(2S) and Z(2(S' - S)) parafermionic field theories perturbed 
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by the respective.energy operator with conformal dimension A = 1/(1 + S) and A = 
1/(1 + S' - S).  Nevertheless, by studying the ultraviolet limit of equations (31) and (32) 
[I61 we conclude that the central charges are indeed those of these parafermionic models, 
namely c = 3S/(S + 1) and c = 3(S' - S)/(1 + S' - S). In order to complete our study it 
remains to analyse the finitesize corrections of the 'vacuum' modes n = 2s and n = 2s'. 
In this case we have used the analytical method introduced in [17]. The computation 
is summarized in the appendix and in what follows we present the main result. In the 
ultraviolet l i t  these modes contribute to the free energy with a conformal anomaly c = 2. 
Moreover, we have verified that the excitations over the sea of n = 2s and n = 2s' strings 
are coupled through the term n,nz/ZS', where nl and n2 are integer numbers representing 
the 'spin wave' behaviour of two c = 1 bosonic fields. We believe that all these results 
strongly support the conjecture of [8] that the spectnun of this mixed spin system can be 
represented in terms of two SU(2) WzW field theory at levels k = 2s and k = 2(S' - S). 

4. Conclusion 

In this work we have considered the effects of a magnetic field on an integrable system 
of alternating spins S and S'. Although the specific heat (C) depends on both S and 
S' [7,8] we have shown that the zero-field magnetic susceptibility depends only on the 
higher spin S'. In this sense, besides the magnetic susceptibility, it seems important 
to us to define for this model the universal number determined by the Wilson ratio 
W = limT,o C / T x  = x2[2S(S' - S) + S']/S'(S + 1)(S' - S+ I). Hopefully, this number 
may be compared with those obtained from a phenomenological Fermi liquid theory. 

For a enough small magnetic field, our analysis has revealed that the low-lying 
excitations are related to the deformed S U ( 2 ) v  and SU(2)z(s-s) parafermionic field theory. 
This fact together with our computation of the ultraviolet behaviour of the ground state gives 
an extra support to the conjecture that the operator content of this mixed models can be 
described by a combination of the parafermionic and bosonic fields. 

A natural extension of our results is to consider an alternating G L ( N )  mixed model at 
the order k and k' of the symmehic representation constructed in [ 111. Let us announce the 
following results for these mixed G L ( N )  models [18]. In presence of a rank homogeneous 
magnetic field, the low-lying excitations will be described by two S U ( N )  parafermionic 
theories at levels k and k' - k (k' z k) perturbed by the 'energy operator' with conformal 
dimension A = N/(k  -E N )  and A = N/(k' - k f N ) ,  respectively. 'IAe bosonic degrees 
of freedom will contribute to the Casimir energy with a conformal anomaly c = 2(N - 1). 
Moreover, the rank homogeneous combination of the zero-field susceptibility scaled by the 
sound velocity satisfies the relation xu, = k'N(N* - l)/lZn. 
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Appendix 

In this appendix we summarize the finitesize corrections for the ground state of n = 2.9 and 
2s' strings. We shall use the method developed in [17] (for a recent review see [19]), which 
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basic idea consists in the computation of the difference of the energy and the roo: density 
in a finite system of size L from their thermodynamic limit (L -+ 03 values). Following 
[17] we have the energy 

where u.!&) = u&(p) = 1/2cosh(np) are the bulk densities of the strings of size R = 2 s  
and 2S', respectively. The functions Si(p)  are defined by 

where u,!(p)(uf(p)) is the 'finite' root density of strings n = 2 s  (2s'). Analogously, the 
mot densities satisfy the following equation 

For large L, according to the method of [17,19], equation (A.3) can be transformed in 
a Wiener-Hopf equation in the variable Xi(.\.) = uL(A + Ai), where Ai is the largest root 
magnitude determined by the condition 

lmuL(A)dA = -+ 1 - 2ri 
L L  (A.4) 

where r1 = nl + Sn*/S', rz = nl + nz, and nl(n2) is an integer number characterizing 
the 'spin wave' excitations over the ground state of 2S(2S') string. Finally, by solving 
the Wiener-Hopf system of equations for Xi@) (the solution is fairly parallel with that of 
equation (11) of section 2) and taking into account the condition (A.4) we obtain 

Considering the predictions of conformal invariance for a finite system of size L 
[4,20,21] and that the sound velocity is us = ~JI we find that the central charge is c = 2 
and the conformal dimension associated with the excitations nl , nz is 

xn,,"* (3 + 3. + '") 
4 s  4s' 2s' 
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